CO2 Hydrogenation over Nanoceria-Supported Transition Metal Catalysts: Role of Ceria Morphology (Nanorods versus Nanocubes) and Active Phase Nature (Co versus Cu)

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CO Hydrogenation over Alumina-Supported Sulfide Cluster Catalysts

Bimetallic Mo-Fe and Mo-Co sulfide clusters were anchored on AI,O, and used for CO hydrogenation. In addition to methane, significant amounts of dimethyl ether were produced. The reaction orders obtained from power rate laws for methanation indicated that the surfaces of the catalytic ensembles were not completely saturated by CO, in contrast to the observations for most conventional CO hydroge...

متن کامل

Selective hydrogenation of nitroaromatics by ceria nanorods.

Ceria (CeO2) nanorods with well-defined surface planes can be synthesized and utilized for the hydrogenation of nitroaromatics. The CeO2 nanorods containing a {110} plane can efficiently and selectively catalyse the hydrogenation of nitroaromatics with N2H4 as a reducing agent, while nano-ceria with a {100} or {111} plane shows poor performance for the reaction.

متن کامل

Effect of platinum on Ceria supported Cu catalysts for PrOx process in fuel processors

The CO preferential oxidation (PrOx) is one of the critical steps in hydrogen production and purification for Polymer Electrolyte Membrane Fuel Cell (PEMFC). This reaction was investigated in the presence of excess hydrogen over Cu/CeO2, Pt/CeO2 and Cu-Pt/CeO2 catalysts. The ceria supports was prepared via precipitation method and Cu-Pt/CeO2 catalyst was synthesized by sequential impregnation o...

متن کامل

Comment on "Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts".

Kattel et al (Reports, 24 March 2017, p. 1296) report that a zinc on copper (Zn/Cu) surface undergoes oxidation to zinc oxide/copper (ZnO/Cu) during carbon dioxide (CO2) hydrogenation to methanol and conclude that the Cu-ZnO interface is the active site for methanol synthesis. Similar experiments conducted two decades ago by Fujitani and Nakamura et al demonstrated that Zn is attached to format...

متن کامل

Response to Comment on "Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts".

In their Comment on the our recent Report, Nakamura et al argue that our x-ray photoelectron spectroscopy (XPS) analysis was affected by the presence of formate species on the catalyst surface. This argument is not valid because the reactant gases were evacuated at temperatures from 525 to 575 kelvin, conditions under which formate is not stable on the catalyst surface. An analysis of the XPS r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nanomaterials

سال: 2019

ISSN: 2079-4991

DOI: 10.3390/nano9121739